3.5.6 \(\int (a+a \sin (e+f x))^m (c-c \sin (e+f x))^2 \, dx\) [406]

Optimal. Leaf size=86 \[ -\frac {2^{\frac {1}{2}+m} a^3 c^2 \cos ^5(e+f x) \, _2F_1\left (\frac {5}{2},\frac {1}{2}-m;\frac {7}{2};\frac {1}{2} (1-\sin (e+f x))\right ) (1+\sin (e+f x))^{\frac {1}{2}-m} (a+a \sin (e+f x))^{-3+m}}{5 f} \]

[Out]

-1/5*2^(1/2+m)*a^3*c^2*cos(f*x+e)^5*hypergeom([5/2, 1/2-m],[7/2],1/2-1/2*sin(f*x+e))*(1+sin(f*x+e))^(1/2-m)*(a
+a*sin(f*x+e))^(-3+m)/f

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {2815, 2768, 72, 71} \begin {gather*} -\frac {a^3 c^2 2^{m+\frac {1}{2}} \cos ^5(e+f x) (\sin (e+f x)+1)^{\frac {1}{2}-m} (a \sin (e+f x)+a)^{m-3} \, _2F_1\left (\frac {5}{2},\frac {1}{2}-m;\frac {7}{2};\frac {1}{2} (1-\sin (e+f x))\right )}{5 f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^m*(c - c*Sin[e + f*x])^2,x]

[Out]

-1/5*(2^(1/2 + m)*a^3*c^2*Cos[e + f*x]^5*Hypergeometric2F1[5/2, 1/2 - m, 7/2, (1 - Sin[e + f*x])/2]*(1 + Sin[e
 + f*x])^(1/2 - m)*(a + a*Sin[e + f*x])^(-3 + m))/f

Rule 71

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c
 - a*d))^n))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-d/(b*c - a*d), 0]))

Rule 72

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]), Int[(a + b*x)^m*Simp[b*(c/(b*c - a*d)) + b*d*(x/(b*c -
a*d)), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 2768

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[a^2*(
(g*Cos[e + f*x])^(p + 1)/(f*g*(a + b*Sin[e + f*x])^((p + 1)/2)*(a - b*Sin[e + f*x])^((p + 1)/2))), Subst[Int[(
a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&
 EqQ[a^2 - b^2, 0] &&  !IntegerQ[m]

Rule 2815

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rubi steps

\begin {align*} \int (a+a \sin (e+f x))^m (c-c \sin (e+f x))^2 \, dx &=\left (a^2 c^2\right ) \int \cos ^4(e+f x) (a+a \sin (e+f x))^{-2+m} \, dx\\ &=\frac {\left (a^4 c^2 \cos ^5(e+f x)\right ) \text {Subst}\left (\int (a-a x)^{3/2} (a+a x)^{-\frac {1}{2}+m} \, dx,x,\sin (e+f x)\right )}{f (a-a \sin (e+f x))^{5/2} (a+a \sin (e+f x))^{5/2}}\\ &=\frac {\left (2^{-\frac {1}{2}+m} a^4 c^2 \cos ^5(e+f x) (a+a \sin (e+f x))^{-3+m} \left (\frac {a+a \sin (e+f x)}{a}\right )^{\frac {1}{2}-m}\right ) \text {Subst}\left (\int \left (\frac {1}{2}+\frac {x}{2}\right )^{-\frac {1}{2}+m} (a-a x)^{3/2} \, dx,x,\sin (e+f x)\right )}{f (a-a \sin (e+f x))^{5/2}}\\ &=-\frac {2^{\frac {1}{2}+m} a^3 c^2 \cos ^5(e+f x) \, _2F_1\left (\frac {5}{2},\frac {1}{2}-m;\frac {7}{2};\frac {1}{2} (1-\sin (e+f x))\right ) (1+\sin (e+f x))^{\frac {1}{2}-m} (a+a \sin (e+f x))^{-3+m}}{5 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 6 vs. order 5 in optimal.
time = 139.29, size = 88512, normalized size = 1029.21 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Sin[e + f*x])^m*(c - c*Sin[e + f*x])^2,x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [F]
time = 0.99, size = 0, normalized size = 0.00 \[\int \left (a +a \sin \left (f x +e \right )\right )^{m} \left (c -c \sin \left (f x +e \right )\right )^{2}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^m*(c-c*sin(f*x+e))^2,x)

[Out]

int((a+a*sin(f*x+e))^m*(c-c*sin(f*x+e))^2,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m*(c-c*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

integrate((c*sin(f*x + e) - c)^2*(a*sin(f*x + e) + a)^m, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m*(c-c*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

integral(-(c^2*cos(f*x + e)^2 + 2*c^2*sin(f*x + e) - 2*c^2)*(a*sin(f*x + e) + a)^m, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} c^{2} \left (\int \left (- 2 \left (a \sin {\left (e + f x \right )} + a\right )^{m} \sin {\left (e + f x \right )}\right )\, dx + \int \left (a \sin {\left (e + f x \right )} + a\right )^{m} \sin ^{2}{\left (e + f x \right )}\, dx + \int \left (a \sin {\left (e + f x \right )} + a\right )^{m}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**m*(c-c*sin(f*x+e))**2,x)

[Out]

c**2*(Integral(-2*(a*sin(e + f*x) + a)**m*sin(e + f*x), x) + Integral((a*sin(e + f*x) + a)**m*sin(e + f*x)**2,
 x) + Integral((a*sin(e + f*x) + a)**m, x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m*(c-c*sin(f*x+e))^2,x, algorithm="giac")

[Out]

integrate((c*sin(f*x + e) - c)^2*(a*sin(f*x + e) + a)^m, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (a+a\,\sin \left (e+f\,x\right )\right )}^m\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^2 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(e + f*x))^m*(c - c*sin(e + f*x))^2,x)

[Out]

int((a + a*sin(e + f*x))^m*(c - c*sin(e + f*x))^2, x)

________________________________________________________________________________________